C, 45.61; H, 6.02; Cl, 6.41; mol wt, 1106. Found: C, 45.56; H, 6.13; Cl, 6.52; mol wt, 1121 (cryoscopic in benzene). For 3b, the ¹H NMR (C₆D₆) exhibits singlets at δ 8.96 (30 H, line width = 6 Hz.), -154 (3 H, line width \approx 7 Hz). Singlets at 7 8.39 (30 H, line width – 6 H2.), – 134 (3 H, line width – 7 H2.), Anal. Calcd for C₂₁H₃₃UCI: C, 45.12; H, 5.95; Cl, 6.34; mol wit, 559. Found: C, 44.99; H, 5.89; Cl, 6.39; mol wt, 568 (cryoscopic in benzene). (e) Anal. Calcd for C40H64Th2 (4a): C, 47.61; H, 6.41; mol wt, 1009. Found: C, 48.63; H, 6.63; mol wt, 1038 (cryoscopic in benzene). (f) For 4b, broadened bands spectrum (C₆D₆) shows a singlet at $\delta - 2.15$ (line width = 4 Hz); the hydride

- signal has not, as yet, been located.
 (9) (a) Organothorium compounds are generally observed to be less soluble than the analogous uranium compounds.^{1,40,9b} Judging from the results on 3, it is also possible that 1a and 1b have different structures. (b) C. Le-Vanda, and A. Streitwieser, Jr., Int. Conf. Organomet. Chem., 8th, 1977, Abstract No. 3A27 (1977)
- Abstract No. 3A27 (1977).
 (10) (a) T. J. Marks, and A. M. Seyam, J. Organomet. Chem., 67, 61–66 (1974);
 (b) E. Köhler, W. Brüser, and K. H. Thiele, J. Organomet. Chem., 76, 235–240 (1974);
 (c) E. R. Sigurdson, and G. Wilkinson, J. Chem. Soc., Dalton Trans., 812–818 (1977);
 (d) A. M. Seyam, and G. A. Eddein, Inorg. Nucl. Chem. Lett., 812-818 (1977), and private communication to T. J.
- (11) E. H. Braye, W. Hübel, and I. Caplier, J. Am. Chem. Soc., 83, 4406-4413 (1961)
- (12) R. D. Shannon, and C. T. Prewitt, Acta Crystallogr., Sect. B, 25, 925-930 (1969).
- (13) (a) L. J. Nujent, "MTP International Review of Science, Inorganic Chemistry (a) Lio, Nejon, Willing, Weinheim/Bergstr., 1971, p 212.
- Prepared from Th[(CH₃)₅C₅]₂(CH₃)₂ and D₂.
- (15) (a) P. C. Wailes, R. S. P. Coutts, and H. Weigold, "Organometallic Chemistry of Titanium, Zirconium, and Hafnium", Academic Press, New York, N.Y 1974, Chapter IVC; (b) H. D. Kaesz, and R. B. Saillant, Chem. Rev., 72, 231-281 (1972); (c) G. L. Geoffroy, and J. R. Lehman, Adv. Inorg. Chem. Radiochem, **20**, 189–290 (1977); (d) T. J. Marks, W. J. Kennelly, J. R. Kolb, and L. A. Shimp, *Inorg. Chem.*, **11**, 2540–2546 (1972). (a) $\nu_{M-H}/\nu_{M-D} = 1.38$. (b) ν_{M-H} was obscured by Nujol; the band position was calculated from ν_{M-D} assuming $\nu_{M-H}/\nu_{M-D} = 1.39$. (c) $\nu_{M-H}/\nu_{M-D} =$
- (16) (a) $\nu_{M-H}/\nu_{M-D} =$ 1.39. (d) $\nu_{M-H}/\nu_{M-D} = 1.39.$ (17) H. Weigold, A. P. Bell, and R. I. Willing, *J. Organomet. Chem.*, **73**, C23–24
- (1974)
- (18) Reference 15a, Chapters IVB and VD.
- (19) This process also occurs in [(tetrahydroindenide)₂ZrH₂]₂, but at a considerably reduced rate.¹⁷
- (20) (a) F. Calderazzo, Angew. Chem., Int. Ed. Engl., 16, 299–310 (1977); (b) A. Wojcicki, Adv. Organomet. Chem., 11, 87–145 (1973).
 (21) J. M. Manriquez, P. J. Fagan, T. J. Marks, and V. W. Day, unpublished
- (22) Camille and Henry Drevfus Teacher-Scholar.

Juan M. Manriquez, Paul J. Fagan, Tobin J. Marks*22

Department of Chemistry, Northwestern University Evanston, Illinois 60201 Received February 27, 1978

Activation of Water Molecule. 1. Intermediates Bearing on the Water Gas Shift Reaction Catalyzed by Platinum(0) Complexes

Sir:

The heterogeneously catalyzed water gas shift reaction now employed in industry requires high temperature.¹ Homogeneous catalysts active at lower temperature are attracting considerable interest² because of the favorable thermodynamic equilibrium. Recently three groups have reported homogeneous catalytic systems consisting of metal carbonyls, i.e., $Ru_3(CO)_{12}$ -base^{3,4} and $[Rh(CO)_2Cl]_2$ -HCl-NaI-glacial acetic acid.⁵ The logical basis for employing metal carbonyls as catalysts might be the CO activation through coordination which facilitates nucleophilic attack by water.³⁻⁵

We wish to report here briefly a new approach based on a different strategy to activate the water molecule using lowvalent transition metal complexes capable of forming hydrido hydroxo species, trans-H-M-OH. In view of HSAB principles and the strong trans influence of hydride,⁶ an enhanced nucleophilic reactivity⁷ toward CO is expected for the hydroxo ligand in the H-M-OH species. Possible candidates for such low-valent transition metal compounds are PtL_3 (L = tertiary phosphines).

The results of the water gas shift reactions catalyzed by some PtL₃ complexes are summarized in Table I. Typically the catalytic solution prepared from PtL_3 (0.1 mmol) and H_2O (2 Table I. The Water Gas Shift Reaction^a

Catalyst		Gaseous Products ^b			
	Solvent	Temp. °C	H_2	CO ₂	Turn- over ^c
$Pt[P(i-Pr)_3]_3$	Acetone	100	9.4	8.2	8.8
	Acetone	125	16.0	15.8	159
	Acetone	153	37.5	31.6	345
	THF	100	7.0	6.6	68
	Pyridine	100	0.7	1.0	9
$Pt(PEt_3)_3$	Acetone	100	1.1	1.1	11
$Pt(PPh_3)_3$	THF	100	0	0	0

^a The reaction conditions shown in the text. ^b Millimoles. ^c Moles/mole of catalyst, 18 h.

mL) in an aprotic solvent (5 mL) was placed into a stainless steel bomb (100 mL) under a N_2 atmosphere and subsequently was charged with CO (20 atm). After heating at a fixed temperature for 18 h, the gaseous products in the vapor phase as well as dissolved in the liquid phase were analyzed by gas chromatography^{3,5} and quantitative titration.

A remarkable solvent effect is observed for the catalysis. Coordinating pyridine drastically reduces the catalytic activity of $Pt[P(i-Pr)_3]_{3^8}$ (1). The colorless homogeneous reaction mixture in pyridine after the shift reaction (100 °C, 18 h) contains trans- $\{PtH(pyridine)[P(i-Pr)_3]_2\}OH^9$ (2) which can be stabilized by anion metathesis with BF_4^- (68% yield). By contrast, from the catalytic reaction in acetone or THF carried out under the same conditions was obtained trans-{PtH(CO)- $[P(i-Pr)_3]_2$ OH (3) as the BPh₄⁻ salt¹⁰ in 90% yield.

The precursors 2 and 3 are readily traced from studies on the solution chemistry of PtL_3 . Extensive dissociation of 1 gives PtL₂ as by far the predominant species in solution.¹¹ Consequently the oxidative addition of water occurs with PtL₂ to give 2 via solvation of an incipient species $PtH(OH)L_2$. The addition was found to be reversible as 1 was recovered from a mixture of 1 and H₂O in pyridine on concentration to dryness. The instability of 2 prevents its isolation and the rapid proton exchange between the hydrido ligand of 2 and water apparently obscures the hydrido ¹H NMR signal. In addition to the isolation of *trans*-{PtH(pyridine)[$P(i-Pr)_3$]₂}BF₄, the existence of 2 is further evidenced by conductometric and pH measurements. Thus the system $1/H_2O$ in pyridine ($[H_2O] > 15$ M) shows a conductance ($\Lambda 23.9 \Omega^{-1} \text{ cm}^2$ at 20 °C), and the dissociation of OH^- from 2 is manifested by the apparent pH (14.1) of the system $1/H_2O$ ([1] = 9.8 × 10⁻³ M, [H₂O] = 22.2 M in pyridine, 20 °C).12

A reaction mixture of the water gas shift reaction (100 °C, 18 h) catalyzed by Pt(PEt₃)₃ in acetone contains a water adduct [PtH(PEt₃)₃]OH,¹³ which was isolated as the BPh₄ salt¹⁴ in 72% yield. In this case, the formation of [PtH(CO)-(PEt₃)₂]OH was not observed. The formation of [PtH- $(PEt_3)_3$ + and $\{PtH(pyridine)[P(i-Pr)_3]_2\}$ + is ascribed to their inertness toward CO (1 atm, 25 °C), which accounts for the low catalytic activity of $Pt(PEt_3)_3$ in acetone or 1 in pyridine.

The catalytic activity of PtL_3 decreases in the order $P(i-Pr)_3$ > PEt₃ \gg PPh₃. The complete lack of catalytic activity in $Pt(PPh_3)_3$ is apparently due to the incapability of water adduct formation. The importance of water molecule activation is obvious.

Nucleophilic attack of OH⁻ at the coordinated CO will give $PtH(CO_2H)L_2$. Evidence for the metal carboxylic acid is the formation of the potassium salt trans- $PtH(CO_2K)[P(i-Pr)_3]_2$, observed by ¹H NMR and IR spectra¹⁵ of the solution of trans-{PtH(CO)[P(i-Pr)₃]₂}BPh₄ treated with an excess of KOH in ageuous THF at room temperature. Further indirect support for the formation of the metal carboxylic acid is the successful isolation of trans-PtH(CO₂CH₃)[P(i-Pr)₃]₂¹⁶ (65%

Scheme I. Possible Mechanism for the Water Gas Shift Reaction Catalyzed by $Pt[P(i-Pr)_3]_3$

yield) by the reaction of trans-{PtH(CO)[P(i-Pr)_3]_2}BPh₄ with CH_3ONa at room temperature. Facile formation of Pt(R)- $(CO_2H)(diphos)$ from Pt(R)(OH)(diphos) (R = CH₃, c- C_6H_9) is also known.¹⁷

The CO₂ evolution should occur from thermal decomposition¹⁸ of the unstable $PtH(CO_2H)L_2$.¹⁹ A dihydride species trans-PtH₂[P(i-Pr)₃]₂²⁰ (4) will then be formed. The reaction of 4 with CO leading to $Pt_3(CO)_3L_4$ is possible. However, this route in the catalysis is excluded since the isolated Pt₃- $(CO)_3[P(i-Pr)_3]_4^{21}$ was found almost inactive catalytically. Thus, 4 is thought to undergo hydrogen elimination (Scheme I). Involvement of 4 in the catalytic cycle was confirmed by the dihydride-catalyzed water gas shift reaction²³ from which was isolated 3 as its BPh₄ salt.

Alternatively, reductive elimination of HCO₂H from $PtH(CO_2H)L_2$ with concomitant formation of $Pt[P(i-Pr)_3]_2$ is possible. A rapid catalytic decomposition of HCO₂H into CO_2 and H_2 occurs with 1 at room temperature,²⁴ and the platinum complex was recovered as 4 quantitatively. The decomposition of HCO₂H probably proceeds through oxidative addition of HCO₂H to give trans-PtH(O₂CH)[P(i-Pr)₃]₂, which is followed by β -hydrogen elimination affording **4** and CO_2 . Consistent with this, the decomposition of HCO_2H was also catalyzed by *trans*-PtH(O₂CH)[P(*i*-Pr)₃] $_2^{25}$ prepared separately by CO_2 insertion into the Pt-H bond of 4. The possible pathways are summarized in Scheme I.

References and Notes

- "Catalyst Handbook", Spring-Verlag, London, 1970. J. P. Collman, J. Halpern, J. Norton, and J. Roth, "Workshop on Fundamental (2)Research in Homogeneous Catalysis as Related to U.S. Energy Problems", Stanford University, Stanford, Calif., Dec 4-6, 1974.
- R. M. Laine, R. G. Rinker, and P. C. Ford, J. Am. Chem. Soc., 99, 252-253 (3)(1977).
- (4) H. Kang, C. H. Mauldin, T. Cole, W. Slegeir, K. Cann, and R. Pettit, J. Am. Chem. Soc., 99, 823–8325 (1977). C.-H. Cheng, D. E. Hendriksen, and R. Eisenberg, J. Am. Chem. Soc., 99,
- 2791-2792 (1977) T. G. Appleton, H. C. Clark, and L. E. Menzer, Coord. Chem. Rev., 10, (6)
- 335-422 (1973). (7)T. Yoshida, T. Okano, and S. Otsuka, J. Chem. Soc., Dalton Trans., 993-999
- (1976).(8) S. Otsuka, T. Yoshida, M. Matsumoto, and K. Nakatsu, J. Am. Chem. Soc.,
- (9)
- **B9**, 5550–5558 (1976). BF₄⁻⁻ salt: ν(Pt-H) 2230 cm⁻⁻¹; δ 18.9 (Pt-H, t, J_{P-H} = 14.2, J_{Pt-H} = 1005 Hz), 1.20 (<u>CH₃</u>, q, ³J_{P-H} + ⁵J_{P-H} = 14.7, J_{H-H} = 7.3 Hz), ~2.1 (CH, m), 7.0
- (10) ν (Pt-H) 2178, ν (CO) 2058 cm⁻¹; $\delta 4.55$ (Pt-H, t, $J_{P-H} = 11.3$, $J_{P-H} = 881$ Hz), 1.32 (CH₃, q, $3J_{P-H} + 5J_{P-H} = 15.0$, $J_{H-H} = 7.5$ Hz), ~ 2.7 (CH, m). (11) $K_{diss} = 1.4 \times 10^{-1}$ M (20 °C) in THF, which was determined by the elec-
- tronic spectra with and without added P(I-Pr)3. Two isosbestic points were observe at 363 and 374 nm
- (12) The pH_{app} of NaOH (9.8 $\times 10^{-3}$ M) measured in aqueous pyridine ([H₂O] = 22.2 M) at 20 °C is 13.5.
- (13) D. H. Gerlach, A. R. Kane, G. W. Parshall, J. P. Jesson, and E. L. Muetterties, *J. Am. Chem. Soc.*, **93**, 3543–3544 (1971).

- J. Am. Chem. Soc., **93**, 3543–3544 (1971). (14) H. C. Clark and K. R. Dixon, J. Am. Chem. Soc., **91**, 596–599 (1969). (15) ν (Pt-H) 1943, ν (CO) 1575 cm⁻¹; δ –9.16 (Pt-H, t, $J_{P-H} = 17.6$, $J_{Pt-H} = 609$ Hz), 1.23 (CH₃, q, $^{3}J_{P-H} + ^{5}J_{P-H} = 14.2$, $J_{H-H} = 7.1$ Hz), ~2.3 (CH, m). (16) ν (Pt-H) 1985, ν (CO) 1617, ν (C-O) 1008 cm⁻¹; δ –8.98 (Pt-H, t, $J_{P-H} = 17.7$, $J_{Pt-H} = 630$ Hz), 1.17 (CH₃, q, $^{3}J_{P-H} + ^{5}J_{P-H} = 14.0$, $J_{H-H} = 7.0$ Hz), ~2.1 (CH, m), 3.67 (CH₃O, s, $J_{Pt-H} = 4.5$ Hz).
- (17) M. A. Bennett and C. A. Appleton, J. Organomet. Chem., 55, C88-C90 (1973)
- (18) A. J. Deeming and B. L. Shaw, J. Chem. Soc. A, 443-446 (1969).

- (19) The decomposition of trans-PtH(CO2K)[P(i-Pr)3]2 occurred above 70 °C.
- °C.
 (20) T. Yoshida and S. Otsuka, *J. Am. Chem. Soc.*, **99**, 2134–2140 (1977).
 (21) ν(CO) 1840 (w), 1770 (vs) cm⁻¹; δ 1.17 (CH₃ dd, J_{H-P} = 13.5, J_{H-H} = 7.0 Hz), ~2.5 (CH, m). The equivalence of four P(*i*-Pr)₃ units may be ascribed to the line of disconteness of served for Pt₂(CO)₂(PPh₂). to the ligand dissociation as observed for Pt₃(CO)₃(PPh₃)₄. J. Chatt and P. Chini, J. Chem. Soc. A, 1538-1542 (1970).
- The water gas shift reaction catalyzed by 4 under the same conditions (in acetone, 100 $^{\circ}$ C) shown in the text produced 46 mol of H₂ and 40 mol of (23)
- CO₂/mol of catalyst (24) Employing Pt[P(*i*-Pr)₃]₃ (0.1 mmol) in a mixture of acetone (15 mL) and H₂O (1 mL), HCO₂H (5 mmol) decomposed at 20 °C with a half-time of 15
- (25) ν(Pt-H) 2200, ν(OCO) 1530, 1310 cm⁻¹; δ -21.8 (Pt-H, t, J_{P-H} = 14.8, J_{Pt-H} = 1012 Hz), 1.33 (CH₃, q, ³J_{P-H} + ⁵J_{P-H} = 14.0, J_{H-H} = 6.8 Hz), ~2.4 (CH, m), 9.5 (O₂CH, br). The platinum(II) hydrido formate complex has a precedent, trans-PtH(O2CH)[P(c-C6H11)3]2: A. Immirzi and A. Musco, Inorg. Chim. Acta, 22, L35-L36 (1977).

Toshikatsu Yoshida, Yasuhiko Ueda, Sei Otsuka*

Department of Chemistry Faculty of Engineering of Science Osaka University, Toyonaka, Osaka, Japan 560 Received December 19, 1977

Complete Kinetic Analysis of Thermal Stereomutations of (+)-(1S,2S,3S)-r-1-Cyanot-2-phenyl-1, c-3-dideuteriocyclopropane

Sir:

Both one-center (k_i) and two-center (k_{ij}) thermal epimerizations of cyclopropanes are known in special cases,¹⁻³ but there is no reliable method for anticipating the relative importance of these reaction modes in other cyclopropyl systems. Only experiments capable of discriminating among all onecenter and all two-center epimerization possibilities can provide the factual grounds for developing theory appropriate to this task.

To synthesize the substrate selected for our kinetic studies, (+)-(1S,2S,3S)-r-1-cyano-t-2-phenyl-1,c-3-dideuteriocyclopropane ((+)-1-c), trans- β -deuteriostyrene,⁴ and ethyl diazoacetate- d_1^5 were reacted in the presence of CuSO₄; the resultant mixture of esters was epimerized with potassium tert-butoxide in deuterated tert-butyl alcohol⁶ to afford r-1ethoxycarbonyl-t-2-phenyl-1,c-3-dideuteriocyclopropane. Hydrolysis with dilute acid and resolution through the quinine salt⁷ gave (+)-(1S, 2S, 3S)-2-phenyl-1,3-dideuteriocyclopropanecarboxylic acid. Conversion to the corresponding nitrile, (+)-1-c, was accomplished by way of the acid chloride and the amide.⁸ Epimerization of (+)-1-c with potassium tert-butoxide in deuterated tert-butyl alcohol gave a 70:30 mixture of (+)-1-c and (-)-2-t, without racemization of (+)-1. The rotations in CHCl₃ of optically pure nitriles were $[\alpha]_{\rm D} + 369^{\circ}$ for (+)-1 and $[\alpha]_D - 22.8^\circ$ for (-)-2.

Thermal equilibration⁹ at 242.1 °C of 1 and its cis isomer 2, starting with either isomer, was followed by VPC; the concentration vs. time data provided values for the rate constant $(k_1 + k_2 + k_{13} + k_{23}) = 1.09 \times 10^{-5} \text{ s}^{-1}$ and the equilibrium constant K = 0.40.

When the thermal isomerizations of 1-c and of 2-t were examined by VPC analysis, followed by preparative VPC separation of cis and trans isomers and NMR analysis to distinguish 1-c from 1-t, and 2-c from 2-t, the concentration vs. time data—44 experimental points—were fit to theoretical curves based on exact solutions to the kinetic expressions ap-

© 1978 American Chemical Society